Received 18 March 2005

Accepted 4 May 2005

Online 21 May 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chun-Nian Xia, Wei Zhou and Wei-Xiao Hu*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.101 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Prop-2-ynyl 3-(3,4-dihydroxyphenyl)prop-2-enoate monohydrate

Crystals of the title compound, $C_{12}H_{10}O_4 \cdot H_2O$, were obtained from the Knoevenagel condensation reaction of 3,4-dihydroxybenzaldehyde and monoprop-2-ynyl malonate. The almost planar molecule is the *E* isomer. There are intermolecular O-H···O and C-H···O hydrogen bonds and π - π interactions, which contribute to the formation of the crystal structure.

Comment

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen *et al.*, 1999). These compounds demonstrate anti-atherosclerotic, antibacterial, anti-inflammatory, antiproliferative, immunostimulatory, anti-oxidative, antiviral and neuroprotective properties (Son & Lewis, 2002). In a continuation of our research of structure–activity relationships in caffeic acid derivatives (Xia *et al.*, 2004), we have obtained the title compound, (I), as a product of the Knoevenagel condensation reaction of 3,4-dihydroxybenzaldehyde and monoprop-2-ynyl malonate.

The molecular structure of (I), incorporating one water molecule as crystallization solvent, is illustrated in Fig. 1. The molecular configuration of the caffeic acid ester is the *E* form. Selected bond lengths and angles are listed in the Table 1. All non-H atoms in the molecule are coplanar within 0.0077 (15) Å. The crystal packing (Fig. 2) is stabilized by intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 2). The molecules of caffeic acid ester form stacks along the *b* axis in a head-to-tail manner with the interplanar separation of 3.390 Å, showing the presence of $\pi \cdots \pi$ interactions.

Experimental

3,4-Dihydroxybenzaldehyde (1.4 g, 10 mmol) and monoprop-2-ynyl malonate (3.6 g, 25 mmol) were dissolved in a mixture of pyridine (5 ml) and piperidine (0.2 ml). The solution was stirred at room temperature for 16 h and dried *in vacuo* to give a dark-brown mixture. The cooled mixture was dissolved in dry diethyl ether (10 ml), washed with saturated NaHCO₃ solution, then dried with anhydrous MgSO₄. The solution was filtered and concentrated to yield a light brown crystalline product (2.1 g, 96%). Recrystallization from a mixture of benzene, acetone and H₂O (4:4:1) gave light-brown crystalline prisms (m.p. 389–392 K).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

 $D_x = 1.354 \text{ Mg m}^{-3}$

Cell parameters from 25

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 10.0\text{--}13.7^{\circ} \\ \mu = 0.11 \ \mathrm{mm}^{-1} \end{array}$

T = 296 (2) K

 $R_{\rm int} = 0.022$

 $\theta_{\rm max} = 25.2^\circ$

 $k = 0 \rightarrow 8$

 $h = -1 \rightarrow 15$

 $l = -16 \rightarrow 15$

3 standard reflections

frequency: 60 min

intensity decay: 0.3%

Prism, light brown

 $0.50 \times 0.40 \times 0.30 \text{ mm}$

Figure 1

View of (I), with 30% probability displacement ellipsoids.

Crystal data

 $\begin{array}{l} C_{12}H_{10}O_4 \cdot H_2O\\ M_r = 236.22\\ \text{Monoclinic, } P2_1/n\\ a = 12.857 \text{ (3) } \text{\AA}\\ b = 7.0660 \text{ (12) } \text{\AA}\\ c = 13.5410 \text{ (12) } \text{\AA}\\ \beta = 109.560 \text{ (17)}^\circ\\ V = 1159.2 \text{ (4) } \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.939$, $T_{\max} = 0.969$ 2387 measured reflections 2087 independent reflections 1461 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0424P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 0.3495P]
$wR(F^2) = 0.101$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2087 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
165 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.0107 (18)
refinement	

Table 1

Selected	geometric	parameters ((A, °`).

O1-C3	1.356 (2)	O4-C9	1.336 (2)
O2-C4	1.372 (2)	O4-C10	1.446 (2)
O3-C9	1.2108 (19)		
C9-O4-C10	114.15 (13)	O3-C9-O4	121.44 (15)
O1-C3-C2	125.46 (15)	03-C9-C8	125.79 (16)
O1-C3-C4	115.23 (15)	O4-C9-C8	112.77 (15)
C5-C4-O2	119.31 (14)	O4-C10-C11	109.00 (14)
O2-C4-C3	120.28 (14)		. ,

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1-H1···O5	0.83	1.90	2.7150 (19)	166
$O2-H2 \cdot \cdot \cdot O5^{i}$	0.83	2.20	2.920 (2)	145
O2-H2···O1	0.83	2.22	2.6655 (17)	114
$O5-H5B\cdots O3^{ii}$	0.851 (10)	1.961 (16)	2.757 (2)	155 (3)
$O5-H5A\cdots O2^{iii}$	0.847 (10)	2.278 (19)	3.028 (2)	148 (3)
$C12-H12\cdots O2^{iv}$	0.93	2.40	3.260 (3)	154

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (iv) $-\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

Figure 2

Packing diagram, showing the intermolecular hydrogen bonds (dashed lines), viewed along the b axis.

H atoms of H₂O were located in difference Fourier maps and refined isotropically. C-bound H-atoms were placed at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to $1.2U_{eq}$ of the parent atoms, and C–H distances were set to 0.97 Å for the methylene H atoms and 0.93 Å for the remainder. The O–H distances in the hydroxy groups were fixed at 0.83 Å.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD* (McArdle, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1999); software used to prepare material for publication: *SHELXL97*.

We are very grateful to the National Natural and Scientific Foundation (Grant No.20272053). We also acknowledge the financial support of the Science and Technology Bureau of Zhejiang Province (Grant No.2005C23022).

References

- Chen, W. K., Tsai, C. F., Liao, P. H., Kuo, S. C. & Lee, Y. J.(1999). *Chin. Pharm. J.* **5**1, 271–278.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

McArdle, P. (2000). J. Appl. Cryst. 33, 993.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.

Son, S. & Lewis, B. A. (2002). J. Agric. Food Chem. 50, 468–472. Xia, C. N., Hu, W. X. & Rao, G. W. (2004). Acta Cryst. E60, 0913–0914.